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It is, however, possible to know a great deal and understand little. Knowledge without 
understanding leads to dogmatic methods of work with readily available formulas which, 
although useful, ace insufficient for achieving real successes in the furtherance of science 
and technology. 

In contemporary science, even in a particular narrow special region, it is impossible 
to know all of the available information, while on the other hand an over-all knowledge 
is required at the interface of its various branches. Hence it is important that university 
students obtain a good grasp of universal foundations of knowledge and of methods of 
problem formulation and solution, and one must strive at impacting to them the maximum 
deep understanding with minimum information, which is considerable and increases with 
time. The correct selection of that minimum in the light of prospective developments 
is a pressing current problem. 
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The solutions of the contact problems of the theory of elasticity in the presence 
of wear is given for two cases. In Sect. 1 we consider the problems in which an 
initially curved beam comes in contact with a half-plane. One of the initial as- 
sumptions is that the distance between certain directrices along which the body 
in contact is sliding and the boundary of the half-plane remains constant. In 

Sect. 1 the contact between the curved beam and the half-plane is discussed at 

the assumption that the half-plane is subject to wear. As the result of the wear, 
the pressure between the beam and the half-plane isgradually reduced. It is 

naturally assumed that the pressure at the terminal points of the contact area 

will,in this case, be zero. The conditions characterizing the pressure at these 
terminal points can be established for various types of contact problems only 
under certain additional assumptions; this will be discussed below. 

1. We assume that the initial form of a fairly thin beam is determined by the initial 
deflection wO (3). Let the initial form of the beam be that depicted in Fig. la. After 
the deformation caused by the contact with an rigid half-plane,the beam will assume 

the form shown in Fig. lb. We assume 
that in the present case the beam is 

symmetric and is in contact with the 

h ~&&$ --a<~<+& Weshallfucthec 
elastic half-plane along the segment 

Fig. 1 p(x) assume that the wear is abrasive. In 
this case the amount of material ce- 

moved as the result of wear will be proportional to the work done by the frictional forces. 
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Experimental results obtained for the abrasive wear can be found in [l, 21. If the wear 
is accompanied by a wearing-in process and, in particular, when the bodies in contact 
are of the same material, the wear may become nonlinear. 

Under the above assumptions,the rate of change of the deflection 6 will be given by 

6 = K* vc = Ku, K = K** UK* (1. u 

Here u denotes the averaged modulus of the rate of displacement of the beam (in the 

direction perpendicular to the plane of the diagram). The shear stress z = K* *cr., K* * 

is the coefficient of friction and K* is the proportionality factor connecting the work 
done by frictional forces and the amount of material removed, 

We have already made the assumption of zero pressure at the edges of the area of con- 
tact. This occurs e. g. in the case when the proportionality coefficient connecting the 

rate of wear with the intensity of the frictional forces is not always constant and vanishes 

when the pressure becomes fairly small; moreover it is sufficient that these conditions 

prevail only during the initial stages of the process, A set of experimental data confirms 

this assumption. 
The wear can alter, to some degree, the position of the terminal points of the area of 

contact. This can however be neglected, since the amount of wear is small compared 

with the dimensions of the area of contact. The deflection of the beam at the instant 
t will therefore be 

w (x, t) = wo (4 - K~p(x,tM 
0 

(1.2) 

The pressure p (z, t) is connected with the deflection by the following relation: 

p(x,t)=EI-$w(x,t) 

Using this we obtain from (1.2) t 

w (5, t) = w,(x) - KEI --$- \ w (~‘2) dz 
0 

(1.3) 

We shall seek a particular solution of this equation in the following form: 

wp (x, t) = e+wp (5) 
Substituting (1.4) into (1.3), we find 

(e-a’ - 1) wa (z) = KEI (i (e-Pt - 1)) $ 

The above equation will hold in the case when wa (x) satisfies the relation 

d4wp (x*) 

dx*a - 
4&wp(x*)=o, x*=$x 

(1.4) 

(1.5) 

The general solution of this equation is given by 

ma (X*) = & sin V x* +. h, cos vx* + h, sh vx* + & cb vx* (1.6) 

v= -- 

The eigenvalues and eigenfunctions of Eq. (1.5) can be obtained in the explicit form. 
We must however use the following boundary conditions for the function wp (x*) at the 
points X* = - x and x* = f rc : 
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wa (x*) = ~7~’ (z*) = 0 for z* -= + rr (supported ends) 

wp (CC*) = wp’ (x*) =-_ 0 for X* = f x (clamped ends) 
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(1.7) 

Applying the conditions (1.7) to the function (1.6), we obtain four homogeneous equa- 

tions 

$i %i tv) a ,=o (i=i,2,3,4) 

which lead to the following condition: 

1 %i (v) I = 0 

As the result we obtain a transcendental equation for the eigenvalue v,. Each eigen- 

value V, has a corresponding fundamental function .(P~. These functions can be normed 

and they form a complete system of orthogonal functions. 

Using the second equation of (1.6), we obtain the following expression for fi, 

aJEIK 
L = 7 vn4 

The specified function w,, (r) represents the value of w (t, x) at the instant t = 0; 
it can be expanded into a series in terms of the orthogonal functions cpnshown above 

In this case the solution of the problem becomes 

w(X,t)=~K,eaJl(- *v+J&*) 

n=1 
(1.8) 

Investigating the transcendental equations which are used to determine the eigenvalues 
V we arrive at the conclusion that these eigenvalues form an increasing sequence. 

Tkkefore,in studying the asymptotics at large values of time it is sufficient to restrict 

ourselves to one or to several terms. 

We have thus obtained the exact solution of the problem in question. Below we shall 

consider the two-dimensional problem which is much more complex. We can also ob- 
tain an exact solution for this problem, and it enables us to determine the eigenvalues 

and eigenfunctions, but in this case they will be for certain integral equations. 

We note that the problem considered here resembles the problem of oscillations of a 

rectilinear rod of constant cross section, A similar method can also be used to solve a 
more complex problem of wear of a rod which has the form of a nearly circular beam 
in contact with a rigid circular cylinder, 

2, We shall now obtain, the solutions of certain two-dimensional contact problems 
in the presence of wear. We shall consider the action of a die on the boundary of an 
elastic layer. The die moves relative to this layer in the direction perpendicular to the 

plane of the diagram shown in Fig. 2. Just as in the cases discussed in Sect. 1, the dis- 
placement of the die along certain directrices is such that the distance between these 

directrices and the elastic layer boundary remains constant. In this case the pressure 

acting on the layer boundary will, in the presence of wear, gradually diminish, 
Assuming that the frictional forces (in the z-direction) are absent, we investigate the 

contact problems under the following conditions : 
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1”. The layer rests on a rigid support and there is no friction in the z-direction 
between the layer and the support. 

2”. The layer is rigidly bound to the support. 
3”. The modulus of elasticity of the layer material is a function of the coordinate 

y , and is not zero when y = 0). The lower boundary of the layer may lie on the sup- 
port without friction, or be rigidly bound to it. 

)?i In all the problems in question the displacement 
of the surface and the pressure appearing under the 
die, are connected by the following integral equa- 

We note that the above relation has a symmetric 
Fig. 2 kernel. This is due to the fact that the displacement 

of the boundary caused by the action of the force, 
is a function of the distance separating the coordinate at which the force is applied from 

the coordinate of the point of displacement. The simplest known relation of this type is 
for a half-plane 

W= A 5 his--EIP@@ 
---a 

It should be noted that the kernels of the type encountered in { 2.1) will also have a lo- 
garithmic singularity (but not of the higher order). This implies that the kernels of that 
type will be square integrable, and this feature is essential in the further investigation. 
Thus we have the kernels 

(the last two kernels referring to the third problem where two different conditions may 
occur at the lower boundary of the elastic layer). 

It needs to be said that the problem in which the elastic layer rests on the half-plane 
without friction is not completely correct, as between the layer and the support a normal 
displacement may occur* It will be correct under certain specified conditions for a layer 
possessing weight, as such layer will not detach itself from the support. In this case a 
somewhat different Green’s function will be needed for constructing the integral relation, 

We assume that abrasive wear takes place, hence we use the relation (1.1). The argu- 
ments given in Sect. 1 concerning the pressure at the edges of the area of contact also 
remain ln force. Using (1. l), we obtain the following equation: 

t 

w(x,t)=W&)-- kSPW)d~ (2.2) 
0 

Here the function w,, (5) describes the area of the die at the initial instant of time, 
and is known. The expression for w (x, t) can be written in the form of a sum of two 
terms 

w (5, t) = Wl (.t', t> + w2 (% 0 

t (2.3) 
w1(z,t) = WOl(G 0 - &(MW~ 

0 
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It is expedient to write the pressure p (5, t) in the form of a sum of two terms corre- 
sponding to the functions w1 (z) and W2 @I 

P (59 t) = PI (x9 t) + P2 b, Q 

This results from the fact that the pressure p (2) at t = 0 can be written in the form 

of a series in terms of the eigenfunctions of a certain homogeneous Fredholm equation. 
But the eigenvalues for this integral equation can be either positive, or negative, In or- 

der to obtain an expression for the pressure which will decrease with time,we must multi- 
ply these eigenfunctions by an exponential function of time, and the exponent must con- 

tain the time multiplied by a negative coefficient (just as in the expressions (1.4) ) . 

Therefore, in order to obtain the pressure and displacements at the successive instants of 
time, these eigenfunctions must be multiplied by different functions of time. 

We solve Eqs. (2.2) and (2.3) using the functions associated with the eigenfunctions 
of a certain homogeneous Fredholm equation. The functions are constructed using the 

method given above. 

a 

s e-%‘TK 15 - E 1 Pn’ (E) 0% + [ efcLn”‘K 1 Z - E 1 &am (E) & = (2.4) 

--a --5 

-a --a 
t 

K 1 f3-an’r Pn* (E) df - k S esQn”‘Pnm (E) dr 
0 0 

Equations (2.4) can be written in the form 

Thus, Eq, (2.4) is satisfied if the functions PI (E) and ps (E) satisfy the following 
homogeneous Fredholm equation: 

(2. s) 

Here the functions p1 i; and p2 (E) are selected in such a manner, that p1 (%) can 
be expanded into a series m the eigenfunctions of the homogeneous Fredholm equation 
with the corresponding positive eigenvalues, while p2 (E) can be expanded into a series 
in the eigenfunctions of the same Fredholm equation with the corresponding negative 

eigenvalues. This ensures that the system of functions in question is complete. 
Equation (2.6) together with the conditions indicated enables us to determine Us and 

a,“. For a positive value of A, we have 
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h,L :A K I a’,, a,’ = K I h, 

and for a negative value of A,, we have 
3,, = - K / a,” 

from which it follows that Us” == - K / A,. 

The initial function pa (z) which represents the pressure at the initial instant oftime, 

can be expanded into a series in eigenfunctions of the integral equation (2.6) which are 

orthogonal by virtue of the kernel 

The pressure at subsequent instants of time is given by 

where h,’ denotes the positive, and h,” the negative characteristic numbers. 
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An approach-evasion problem with a functional target set under constraints on 

the system’s trajectory is studied for a conflict-controlled system described by 
a differential-difference equation. The main result states: either a strategy 
exists for the first player resolving the approach problem or a strategy exists 
for the second player resolving the evasion problem. The paper is closely re- 
lated to [l-6]. 

1. We examine the system with aftereffect 

2’ 0) = f (G x1 (a), u, v), t, < t < 6 (1.1) 

u”PcE,,, vEQcE r* 

Here x is the n -dimensional phase vector ; u and v are the controls of the first and 
second players: P and Q are compacta; the functional f (t, it (s), u, V) is defined 


